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Abstract

Control allocation deals with the problem of distributing a given control demand among

an available set of actuators. Most existing methods are static in the sense that the resulting

control distribution depends only on the current control demand. In this paper we propose

a method for dynamic control allocation, in which the resulting control distribution also

depends on the distribution in the previous sampling instant. The method extends regular

quadratic programming control allocation by also penalizing the actuator rates. This leads

to a frequency dependent control distribution which can be designed to, e.g., account for

different actuator bandwidths. The control allocation problem is posed as a constrained

quadratic program which provides automatic redistribution of the control effort when one

actuator saturates in position or in rate. When no saturations occur, the resulting control

distribution coincides with the control demand fed through a linear filter.
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581 83 Linköping, Sweden, ola@isy.liu.se, http://www.control.isy.liu.se/∼ola

1 of 27



Introduction

In recent years, nonlinear flight control design methods, like dynamic inversion1–3 and

backstepping,4,5 have gained increased attention. These methods result in control laws

specifying the moments to be produced in pitch, roll, and yaw, rather than which particular

control surface deflections to produce. How to transform these virtual, or generalized, control

commands into actual control commands is known as the control allocation problem. Figure 1

illustrates the resulting control configuration.
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Figure 1. Control configuration when control allocation is used.

With a redundant actuator suite there are several combinations of actuator positions

which all produce the same virtual control, and hence give the same overall system behavior.

This design freedom is often used to optimize some static performance index, like minimum

control, or to prioritize among the actuators. This can be thought of as affecting the distribu-

tion of control effect in magnitude among the actuators. Regardless of method (optimization

based allocation,6–10 daisy chain allocation,11–13 direct allocation,10,14,15 etc.), the resulting

mapping from the virtual control command, v(t), to true control input, u(t), can be written

as a static relationship

u(t) = h(v(t)) (1)

A possibility that has been little explored is to also affect the distribution of the control

effect in the frequency domain, and use the redundancy to have different actuators operate in
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different parts of the frequency spectrum. This requires the mapping from v to u to depend

also on previous values of u and v, hence

u(t) = h(v(t), u(t − T ), v(t − T ), u(t − 2T ), v(t − 2T ), . . . ) (2)

where T is the sampling interval. We will refer to this as dynamic control allocation.

The term dynamic allocation was introduced in Ref. 16, which considers control of marine

vessels, equipped with azimuth (rotatable) thrusters. Essentially, the authors use the low

frequency component of the total thrust demand to decide the azimuth angles, which are

then used to compute the force to be produced by each thruster.

Some flight control examples where filtering has been introduced in the control allocation

can also be found in the literature. Ref. 17 considers a case where canards and tailerons

are available for pitch control. To achieve a fast initial aircraft response, and to make use

of the fast dynamics of the canards, the high frequency component of the required pitching

moment is fed to the canards while the remaining low frequency component is fed to the

tailerons, which are used solely at trimmed flight.

Another example can be found in Ref. 18, where thrust vectored control (TVC) is avail-

able. To prevent the TVC vanes from suffering thermal damage from the jet exhaust, the

TVC deflection command is fed to a wash-out filter (static gain zero), so that the vanes do

not remain deflected on the exhaust for long periods of time.

In Ref. 19, rate saturation problems are used as a motivation for dynamic control alloca-

tion, or frequency-apportioned control allocation, as the authors call it. The high and low

frequency components of the moment demand are each multiplied by a weighted pseudoin-

verse of the control effectiveness matrix, B, with the weights based on the rate and position

bounds of the actuators, respectively. With this strategy, fast actuators are used for high

frequency control, and the chances of rate saturation are reduced.
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Hence, there are practical cases where dynamic control allocation is desirable. In this

paper, a new systematic method for dynamic control allocation is proposed. The method is

an extension of regular quadratic programming control allocation. The key idea is to add an

extra term to the optimization criterion to also penalize actuator rates. When no saturations

occur, the control allocation mapping becomes a linear filter of the form

u(t) = Fu(t − T ) + Gv(t) (3)

from the virtual control command v to the actuator commands u. The frequency char-

acteristics of this filter are decided by weighting matrices selected by the control designer.

Thus, unlike most previous methods, no filters are to be explicitly constructed by the control

designer.

Two design examples are included to illustrate the potential benefits of using the proposed

scheme for dynamic control allocation.

Control Allocation Problem Formulation

As stated in the introduction, an important application of control allocation is nonlinear

flight control. Consider a general nonlinear dynamical model of an aircraft given by

ẋ = f(x, δ) (4a)

δ̇ = g(δ, u) (4b)

where x = aircraft state vector, δ = actuator positions, and u = commanded actuator

positions. To incorporate the actuator position and rate constraints we impose that

δmin ≤ δ ≤ δmax,
∣∣δ̇∣∣ ≤ δrate (5)
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where δmin and δmax are the lower and upper position constraints, and δrate specifies the

maximal individual actuator rates.

Even in the case when f and g are linear, it is nontrivial to design a control law which

gives the desired closed loop dynamics while assuring that the actuator constraints are met.

A common approach is therefore to split the design task into two subtasks. Neglecting the

typically fast actuator dynamics, i.e., assuming δ = u, and viewing the actuators as pure

moment generators yields the approximate model

ẋ = fM(x,M(x, u)) (6)

where M(x, u) is the mapping from the commanded actuator positions to the resulting

aerodynamic moment acting on the aircraft and fM describes how the aerodynamic moment

affects the aircraft dynamics.

The control design can now be performed in two steps. First, design a control law in

terms of the moment to be produced,

M(x, u) = k(r, x) (7)

that yields some desired closed loop dynamics, where r = pilot command. Second, determine

u, constrained by (5) (with δ = u), that satisfies (7).

The latter step is the control allocation step. Since modern aircraft use digital control

systems, it is reasonable to merge the constraints (5) into an overall time varying position

constraint given by

u(t) ≤ u(t) ≤ u(t) (8)
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where

u(t) = max{δmin, u(t − T ) − δrateT} (9a)

u(t) = min{δmax, u(t − T ) + δrateT} (9b)

and T is the sampling time.12 To simplify the search for a feasible solution to (7) we assume

the aerodynamic moment to be affine in the controls. With this, the equation to be solved

for u becomes

M(x, u) = B(x)u + c(x) = k(r, x) (10)

or, equivalently,

Bu(t) = v(t) (11)

where v(t) = k(r, x)−c(x) is the virtual control command computed from the control law (7).

Now, to perform on-line control allocation we wish to determine, at each sampling instant,

a control command u(t) which is feasible with respect to the actuator constraints (8) and

that satisfies (11), if possible.

Dynamic Control Allocation

The dynamic control allocation method that we propose can be posed as a sequential

quadratic programming problem:

u(t) = arg min
u(t)∈Ω

(∥∥W1(u(t) − us(t))
∥∥2

+
∥∥W2(u(t) − u(t − T ))

∥∥2
)

(12a)

Ω = arg min
u(t)≤u(t)≤u(t)

∥∥Wv(Bu(t) − v(t))
∥∥ (12b)
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where u ∈ R
m is the true control input, us ∈ R

m is the desired steady state control input,

v ∈ R
k is the virtual control command, B ∈ R

k×m is the control effectiveness matrix, and

W1, W2, and Wv are square matrices of the proper dimensions. B is assumed to have full

row rank k.
∥∥ · ∥∥ denotes the Euclidean 2-norm defined by

∥∥u
∥∥ =

√
uT u.

Equation (12) should be interpreted as follows: Given Ω, the set of feasible control

inputs (with respect to position and rate constraints) that minimize the virtual control error

Bu(t) − v(t) (weighted by Wv), pick the control input that minimizes the cost function in

(12a).

Hence, satisfying the virtual control demand (11) has the highest priority. When this is

not possible due to the actuator constraints, (12b) corresponds to solving (11) in the least

squares sense. The design matrix Wv can then be used to affect the way that command

limiting is performed by weighting the virtual control errors differently to prioritize certain

components of v.

When there are several control inputs that give the same virtual control error (not neces-

sarily zero), i.e., when Ω does not contain only a single point, u is made unique by minimizing

the criterion in (12a). This criterion is a mix of 1) keeping the control input close to the

desired steady state value us, and 2) minimizing the change in the control input compared to

the previous sampling instant. The trade-off between these two requirements is governed by

the weighting matrices W1 and W2. A large diagonal entry in W1 will make the correspond-

ing actuator converge quickly to its desired position while a large W2 entry will prevent the

actuator from moving too quickly. Note however that these weighting matrices only affect

the control input if u is not uniquely determined by (12b). The following assumption certifies

that the overall control allocation problem (12) has a unique optimal solution.

Assumption 1 Assume that the weighting matrices W1 and W2 are symmetric and such
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that

W = (W 2
1 + W 2

2 )1/2 (13)

is nonsingular.

The symmetry assumption is no restriction since if, e.g., W1 is not symmetric, it can be

replaced by the symmetric matrix square root (W T
1 W1)

1/2 without affecting the solution.

Equation (12) specifies which solution to the control allocation problem that is sought but

not how to find it. To actually solve the optimization problem, the two terms in (12a) can

first be merged into one term without affecting the solution. Then, any QP solver suitable

for real-time implementation6,7, 9, 20 can be used to find the solution. Since the optimization

problem (12) is to be solved at each sampling instant, no variables need to be constant. This

means that the control efficiency matrix B can be updated continuously, which allows for

reconfiguration after an actuator failure, and that different weighting matrices can be used

for different flight cases.

By including the previous control input in the optimization problem (12), the resulting

control distribution will clearly be a mapping of the form

u(t) = h(v(t), u(t − T )) (14)

It is important to point out that despite the control allocator now being a dynamical system,

no extra lag is introduced into the control loop since minimizing the virtual control error

has top priority in (12).

Let us now investigate some characteristics of the discrete time dynamical system (14). In

the following section we consider the nonsaturated case in which h can be found analytically,

and investigate the issues of stability and steady state distribution.
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The Nonsaturated Case

If no actuators are saturated in the solution to (12), the actuator constraints can be

disregarded and the optimization problem reduces to

min
u(t)

(∥∥W1(u(t) − us(t))
∥∥2

+
∥∥W2(u(t) − u(t − T ))

∥∥2
)

(15a)

subject to Bu(t) = v(t) (15b)

Explicit Solution

Having removed the actuator constraints, one can derive a closed form solution to (15).

Theorem 1 Let Assumption 1 hold. Then the control allocation problem (15) has the solu-

tion

u(t) = Eus(t) + Fu(t − T ) + Gv(t) (16)

where

E = (I − GB)W−2W 2
1 (17)

F = (I − GB)W−2W 2
2 (18)

G = W−1(BW−1)† (19)

Proof: It is straightforward to show that the cost function in (15a) has the same minimizer

as
∥∥W (u(t) − u0(t))

∥∥ where

W = (W 2
1 + W 2

2 )1/2

u0(t) = W−2(W 2
1 us(t) + W 2

2 u(t − T ))
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Now, adding the linear constraint (15b), where B has full row rank, gives the weighted,

shifted pseudoinverse solution

u(t) = (I − GB)u0(t) + Gv(t)

G = W−1(BW−1)†

from which it follows that

u(t) = (I − GB)W−2W 2
1︸ ︷︷ ︸

E

us(t) + (I − GB)W−2W 2
2︸ ︷︷ ︸

F

u(t − T ) + Gv(t)

which completes the proof. A more detailed proof can be found in Ref. 21.

The † symbol denotes the pseudoinverse operator defined as22 B† = BT (BBT )−1 for a

k × m matrix B with full row rank k.

The theorem shows that the optimal solution to the control allocation problem (15) is

given by the linear filter (16). The properties of this filter will be investigated in the two

following sections.

Dynamic Properties

Let us first study the dynamic properties of the filter (16). Note that the optimization

criterion in (15) does not consider future values of u(t). It is therefore not obvious that the

resulting filter (16) is stable. The poles of the filter, which can be found as the eigenvalues

of the matrix F , are characterized by the following theorem.

Theorem 2 Let F be defined as in Theorem 1 and let Assumption 1 hold. Then the eigen-

values of F , λ(F ), satisfy

0 ≤ λ(F ) ≤ 1 (20)
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If W1 is nonsingular, the upper eigenvalue limit becomes strict, i.e.,

0 ≤ λ(F ) < 1 (21)

Proof: We wish to characterize the eigenvalues of

F = (I − GB)W−2W 2
2

= (I − W−1(BW−1)†B)W−2W 2
2

= W−1(I − (BW−1)†BW−1)W−1W 2
2

(22)

Let the singular value decomposition of BW−1 be given by

BW−1 = UΣV T = U

[
Σr 0

]
V T

r

V T
0


 = UΣrV

T
r

where U and V are orthogonal matrices and Σr is a k × k diagonal matrix with strictly

positive diagonal entries (since BW−1 has rank k). This yields

I − (BW−1)†BW−1 = I − VrΣ
−1
r UT UΣrV

T
r = I − VrV

T
r = V0V

T
0

since V V T = VrV
T
r + V0V

T
0 = I. Inserting this into (22) gives us

F = W−1V0V
T
0 W−1W 2

2

Now use the fact23 that the nonzero eigenvalues of a matrix product AB, λnz(AB), satisfy

λnz(AB) = λnz(BA) to get

λnz(F ) = λnz(V
T
0 W−1W 2

2 W−1V0)
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From the definition of singular values we get

λ(V T
0 W−1W 2

2 W−1V0) = σ2(W2W
−1V0) ≥ 0

This shows that the nonzero eigenvalues of F are real and positive and thus, λ(F ) ≥ 0 holds.

What remains to show is that the eigenvalues of F are bounded by 1. To do this we

investigate the maximum eigenvalue, λ(F ).

λ(F ) = σ2(W2W
−1V0) =

∥∥W2W
−1V0

∥∥2 ≤ ∥∥W2W
−1

∥∥2 ∥∥V0

∥∥2

Since ∥∥V0

∥∥2
= λ(V T

0 V0︸ ︷︷ ︸
I

) = 1

we get

λ(F ) ≤ ∥∥W2W
−1

∥∥2
= sup

x 6=0

xT W−1W 2
2 W−1x

xT x

Introducing y = W−1x yields

λ(F ) ≤ sup
y 6=0

yT W 2
2 y

yT W 2y
= sup

y 6=0

yT W 2
2 y

yT W 2
1 y + yT W 2

2 y
≤ sup

y 6=0

yT W 2
2 y

yT W 2
2 y

= 1

since yT W 2
1 y =

∥∥W1y
∥∥2 ≥ 0 for any symmetric W1. If W1 is nonsingular, we get yT W 2

1 y =∥∥W1y
∥∥2

> 0 for y 6= 0 and the last inequality becomes strict, i.e., λ(F ) < 1 in this case.

The theorem states that the poles of the linear control allocation filter (16) lie between

0 and 1 on the real axis. This has two important practical implications:

• If W1 is nonsingular the filter poles lie strictly inside the unit circle. This implies

that the filter is asymptotically stable, which means that the actuator responses will

be bounded for a bounded virtual control command. If W1 is singular, only neutral
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stability can be guaranteed (although asymptotic stability may hold).

• The fact that the poles lie on the positive real axis implies that the actuator responses

to a step in the virtual control input are not oscillatory.

Steady State Properties

In the previous section we showed that the control allocation filter (16) is asymptotically

stable under mild assumptions. Let us therefore investigate the steady state solution for a

constant virtual control input.

Theorem 3 Let us satisfy

Bus = v0 (23)

where v(t) = v0 is the desired virtual control input. Then, if W1 is nonsingular, the steady

state control distribution of (16) is given by

lim
t→∞

u(t) = us (24)

Proof: If W1 is nonsingular, the linear filter (16) is asymptotically stable according to

Theorem 2. This means that in the limit, u(t) = u(t − T ) holds. Then (15) reduces to

min
u

∥∥W1(u − us)
∥∥2

subject to Bu = v0

(25)

If us satisfies Bus = v0, then u = us is obviously one optimal solution to (25). Further, if

W1 is nonsingular, u = us is the unique optimal solution.

Since us can be time varying in (12), the theorem condition (23) can be fulfilled by

selecting us(t) = Sv(t) where BS = I. For example, selecting S = B† minimizes the
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control input norm
∥∥u

∥∥ at steady state. If us does not satisfy (23), the steady state control

distribution will also depend on W1. This is undesirable since it makes the role of the design

parameter W1 unclear.

Design Examples

Let us now apply the proposed method to two different design examples to see what

dynamic control allocation can offer and how to select the tuning variables.

Actuator Dynamics

One application of dynamic control allocation is to account for actuator dynamics. Actuator

dynamics can be an obstacle to performing control allocation since most allocation schemes –

including the one proposed in this paper – assume a static relationship between the actuator

commands and the resulting total control effort, see (11). Disregarding these dynamics in

cases when one or several of the actuators has a low bandwidth may deteriorate the overall

system behavior, and possibly even lead to instability.

A previously proposed strategy is to modify the natural actuator dynamics, using feed-

back or feedforward compensation, or a combination of the two, to effectively increase the

actuator bandwidth. This has proven to work well in several applications.24–26 However,

there are situations when this is not practically feasible solution. In this section we consider

one such example and show that combining this type of compensation with dynamic control

allocation can give better results.

Consider the system depicted in Figure 2, with two actuators whose outputs, ua
1 and ua

2,

produce a total control effort of

va = 2ua
1 + ua

2 = Bua, B =

[
2 1

]
(26)
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u1
2

s+2

ua
1

ua
1

u2
10

s+10

2 +
va

Figure 2. System with one slow and one fast actuator.

The actuators have first order dynamics and their bandwidths are 2 rad/s and 10 rad/s,

respectively. Thus, the first actuator is slow but effective while the second one is fast but

less effective. The actuator position limits are given by
∣∣ua

1

∣∣ ≤ 1,
∣∣ua

2

∣∣ ≤ 2.

Assume now that the dynamics of the second actuator are fast enough to be disregarded

for the application in mind, but not the dynamics of the first actuator. As discussed above,

this can be resolved by precompensating the first actuator command with the inverse of the

present dynamics (time discretized) times the desired actuator transfer function, which we

select to be the same as for the fast actuator. Figure 3 shows the overall system structure.

Now that both actuators have a bandwidth of 10 rad/s, the same is true for the total transfer

function from v to va.

v Control

allocation

uca
Actuator

precomp.

u
Actuators

ua

B
va

Figure 3. Overall system configuration.

Figure 4 (top) shows the response to a smoothed step in the virtual control command,

v, when a static control allocator is used (us = 0, W1 = I, W2 = 0, and Wv = 1 in (12)) and
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the sampling time is T = 0.02 s. Both actuator outputs satisfy the position constraints and

the produced control effort va (bottom) responds as expected to the command. However, in

a practical situation there may be additional constraints which makes this an undesirable

solution. For example, if the actuators are electrical motors, the large position error in the

first actuator response may lead to an input voltage that is infeasible.

To account for the difference in bandwidth in a more suitable way, let us design a dy-

namic control allocator which uses both actuators to produce the low frequency part of the

total control demand, but only the fast actuator for the high frequency part. This can be

accomplished by selecting the tuning parameters in (12) as

us(t) = B†v(t), W1 = diag(1, 1), W2 = diag(12, 0), Wv = 1 (27)

The precompensation of the first actuator command is still necessary in order to smoothly

merge the two actuator responses. The overall discrete time transfer functions from the

virtual control command v to the actuator commands u are shown in Figure 5. Figure 4

(middle) shows the resulting step response. Initially, the fast actuator is used to produce

most of the control effort, but after about 3 s the actuator commands have converged to

the desired static distribution which is the same as before, u(t) = B†v(t). Thus, without

affecting the static control distribution between the actuators, the transient distribution has

been designed to better account for the difference in actuator bandwidth.

Figure 6 shows the response when v = 3 is commanded. This choice makes the desired

steady state distribution us infeasible. As seen from the figure, the algorithm responds by

utilizing the second actuator more to compensate for the saturated first actuator.
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Figure 4. Simulation results for static and dynamic allocation. Dashed: commanded values.
Solid: actual values.
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Figure 5. Transfer functions from v to u with dynamic allocation.
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Figure 6. Control allocation results for v = 3. Dashed: commanded values. Solid: actual
values.

Multivariable Flight Control

Let us now consider a flight control example. The purpose of the example is to show that

it is straightforward to apply dynamic control allocation also in a multivariable case, and to

illustrate the benefits of using control allocation in general.

The ADMIRE model,27 developed by the Swedish Defence Research Agency (FOI), is used

for simulation. ADMIRE is a MATLAB/Simulink based model of a small single engine fighter

aircraft with a delta canard configuration, and includes actuator dynamics and nonlinear

aerodynamics. The existing baseline control system is used to compute the aerodynamic

moment coefficients, M(x, uAdm), to be produced in roll, pitch, and yaw, see Figure 7. Since

the baseline control system does not take actuator constraints into account, uAdm may be

infeasible. Given M , the control allocator solves (12) for the commanded control surface

deflections, u.

The model parameters B and c in (10) are recomputed at each sampling instant by

linearizing M(x, u) around the current state vector and the current control surface position
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r
ADMIRE

ADMIRE
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Lineariza-

tion

Control
allocation
Eq. (12)

uv

x

Figure 7. Overview of the closed loop system used for simulation.

vector. In the ADMIRE model the sampling time is T = 0.02 s. The constrained least

squares problem (12) is solved at each sampling instant using the weighted least squares

active set solver from Ref. 20.

The control input consists of the commanded deflections for the canard wings (u1), the

right elevons (u2), the left elevons (u3), and for the rudder (u4). The actuator position and

rate constraints in (5) are given by

δmin =

(
−55 −30 −30 −30

)T

· π

180
rad (28)

δmax =

(
25 30 30 30

)T

· π

180
rad (29)

δrate =

(
50 150 150 100

)T

· π

180
rad/s (30)

At trimmed flight at Mach 0.4, 1000 m, the control effectiveness matrix, containing the

partial derivatives of the aerodynamic moment coefficients in roll (Cl), pitch (Cm), and yaw
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(Cn) with respect to the control inputs, is given by

B = 10−2 ×




0 −9.0 9.0 2.7

19.7 −22.4 −22.4 0

0 −3.3 3.3 −8.0


 rad−1 (31)

from which it can be seen, for example, that the elevons are the most effective actuators for

producing rolling moment while the rudder provides good yaw control, as expected. This is

the B-matrix used in the design and analysis of the control allocation filter below.

Let us now consider the requirements regarding the control distribution. At trimmed

flight, it is beneficial not to deflect the canards at all to achieve low drag. We therefore

select the steady state distribution us as the solution to

min
us

∥∥us

∥∥
subject to Bus = v

us,1 = 0

(32)

which yields

us(t) = Sv(t), S =




0 0 0

−5.0 −2.2 −1.7

5.0 −2.2 1.7

4.1 0 −11.2




(33)

During maneuvering, corresponding to higher frequencies of v, we seek a distribution

that splits the pitch command between the canards and the elevons. Further, since the

elevons have a higher rate limit than the rudder we put a higher rate penalty on the rudder.

20 of 27



Selecting

W1 = diag(2, 2, 2, 2) (34)

W2 = diag(8, 10, 10, 20) (35)

and using Theorem 1 yields the control allocation filter

u(t) = Fu(t − T ) + Gtotv(t) (36)

where

F = 10−1 ×




5.9 4.1 4.1 0

2.6 1.8 1.8 0

2.6 1.8 1.8 0

0 0 0 0




(37)

Gtot = G + ES =




0 1.8 0

−5.0 −1.4 −1.7

5.0 −1.4 1.7

4.1 0 −11.2




(38)

in the nonsaturated case. The eigenvalues of F are given by

λ(F ) = 0, 0, 0, 0.95 (39)

which is in agreement with Theorem 2. Note that the number of nonzero eigenvalues (one)

is equal to the dimension of the nullspace of B.

The frequency characteristics of the filter are illustrated in Figure 8, which shows a
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Figure 8. Dynamic control allocation transfer functions from v (moment coefficients) to u
(control surface commands).
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magnitude plot of the transfer functions from v to u. Each transfer function has been

weighted with its corresponding entry in B to show the proportion of v that the actuator

produces. As desired, the steady state gain is zero for the canards while at frequencies above

5 rad/s the pitch command is evenly distributed between the canards and the left and right

elevons. In roll and yaw, the control distribution does not depend on the frequency despite

that the rate penalty for the rudder was selected higher than for the elevons. This is due to

that effectively only two control options – rudder and differential elevons – are available for

lateral control. These controls are therefore determined completely by the commands in roll

and yaw and are not affected by the choice of W1 and W2.

The final tuning variable, Wv, which does not affect the solution in the nonsaturated

case, is selected as

Wv = diag(1, 10, 1) (40)

This puts the highest priority on producing the pitch command correctly.

Figure 9 shows the simulation results from a full pitch up command followed by a full

roll command. When dynamic control allocation is used, the initial response of the canards

and the elevons to the pitch command are of about the same size, while at steady state the

canards are not used at all, in accordance with the designed frequency distributions.

Let us now compare the results from using dynamic control allocation with those obtained

by the baseline control system without reallocation, also shown in Figure 9. The response

to the pitch command at t = 1 s is virtually the same in both cases. Although the control

surface position plots differ slightly, the same aerodynamic moment is produced in both

cases. When the roll command is applied at t = 3 s, the left elevons saturate in both cases.

Whereas the baseline control system does not take this into account, the control allocator

responds by redistributing the control effect to the remaining three actuators. This gives a

faster reduction of the pitch rate and a smaller undershoot. In fact, investigations show that
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with control allocation the virtual control demand (11) is satisfied at all times except just

after 3 s and 5 s where the roll and yaw commands cannot be produced exactly.
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Figure 9. Simulation results for dynamic control allocation (solid) and for the baseline control
system (dashed).
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Conclusions

In this paper a new method for dynamic control allocation has been presented. Dynamic

control allocation offers an extra degree of freedom compared to static control allocation

in that the distribution of control effort among the actuators need not be the same for all

frequencies. One area of use is compensating for actuator dynamics, as illustrated in one of

the design examples.

When no actuators saturate, the control allocator becomes a stable linear filter whose

frequency characteristics are decided by tuning variables selected by the user. The problem

formulation guarantees that the different transfer functions are complementary which makes

it easy to apply the method also in a multivariable case.

Further, since the allocation problem is posed as a quadratic program, it is straightfor-

ward to consider actuator position and rate constraints in order to achieve redistribution of

the control effort when one actuator saturates, and to perform command limiting when the

control demand cannot be satisfied.
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